

Oysters and Ocean Acidification in the Pacific Northwest

CHE Webinar September 18, 2014
Presented by Dr. Simone Alin

Pacific Northwest hatchery failures

Relevance

Photos: Taylor Shellfish

"Between 2005 and 2009, disastrous production failures at Pacific Northwest oyster hatcheries signaled a shift in ocean chemistry that has profound implications for Washington's marine environment."

Washington Blue Ribbon Panel on Ocean Acidification 2012

CO₂

Ocean Acidification (OA) Chemistry 101

How CO₂ in seawater affects marine life

Changes in chemistry

Biological effects

Increase in photosynthesis

Decrease in calcification

Changes in physiology

Temp Oxygen

Overfishing Pollution

Oil spills

Socioeconomic implications of ocean acidification

Washington Blue Ribbon Panel on Ocean Acidification 2012

2014 PMEL Lab Review

Oyster production declines with elevated CO₂

Quality

Photos: G. Waldbusser, E. Brunner

Key outcomes:

- Break-even point identified between net growth and mortality.
- Larvae have smaller shells with signs of dissolution at lower saturation states.
- Monitoring at hatcheries facilitates adaptation strategies.

Barton et al. 2012

Policy linkages from shellfish-science partnership Performance

- Washington State Blue Ribbon Panel on Ocean Acidification – Outgrowth of partnership with shellfish growers (2011– 2012)
- West Coast OA & Hypoxia Science Panel –
 California, Oregon, Washington, and British
 Columbia (2013–present)

Linkages to human health and food security

- Food security Over 1 billion people derive all their dietary protein directly from the ocean.
- Changing CO₂ and nutrient conditions
 - Elevated CO₂ plus nutrient limitation can lead to increased toxin production in harmful algal bloom species.
 - Changes in carbon chemistry may also drive changes in phytoplankton community composition and thus food quality for higher trophic levels.

2014 PMEL Lab Review