
Bisphenol A Substitutes: Are They Safe?

Johanna R. Rochester

March 18th 2015

BPA Substitutes

- BPA is an endocrine disrupting chemical (EDC)
- Growing consumer concern has prompted use of alternatives to BPA by manufacturers
- Many are bisphenol analogues
- Can be in products labeled "BPA free"

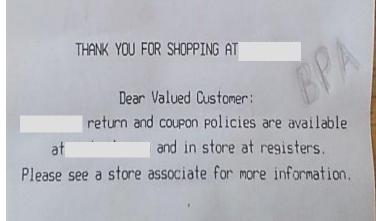
Structural formula	Name	CAS
но-СН3-ОН	Bisphenol A	80-05-7
но-СН3-ОН	Bisphenol AP	1571-75-1
но БЕЕ	Bisphenol AF	1478-61-1
но—СН ₃ —Он	Bisphenol B	77-40-7
но-Он	Bisphenol BP	1844-01-5
H ₃ C CH ₃ OH CH ₃	Bisphenol C	79-97-0
HOOH	Bisphenol C	14868-03-2

Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes

Johanna R. Rochester and Ashley L. Bolden Environmental Health Perspectives Published online March 16th 2015

- Systematic Review
 - Focused on a research question
 - Comprehensive, structured, transparent
 - Study quality
 - Data synthesis

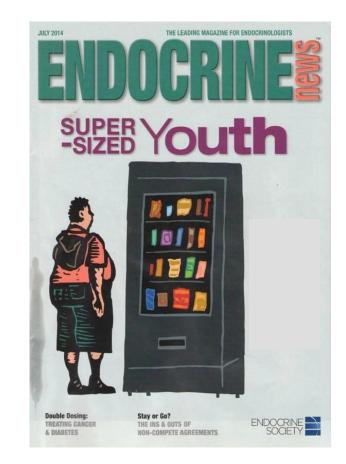
Overview


- Bisphenol A (BPA) as an endocrine disrupting chemical (EDC)
- BPA substitutes: BPS and BPF hormonal activity
- Potency of BPS and BPF compared to BPA
- Conclusions/Recommendations

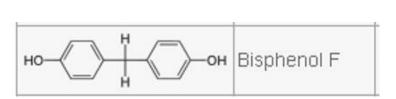
Bisphenol A

- Known estrogen since the 1930s
- Modern Uses
 - Hard plastic
 - Recycling codes #7, #3
 - Thermal receipt paper
 - Dental sealants/fillings
 - Can linings

- >3.5 million tonnes produced per year
- Humans exposed through diet, skin, dust


BPA as an EDC

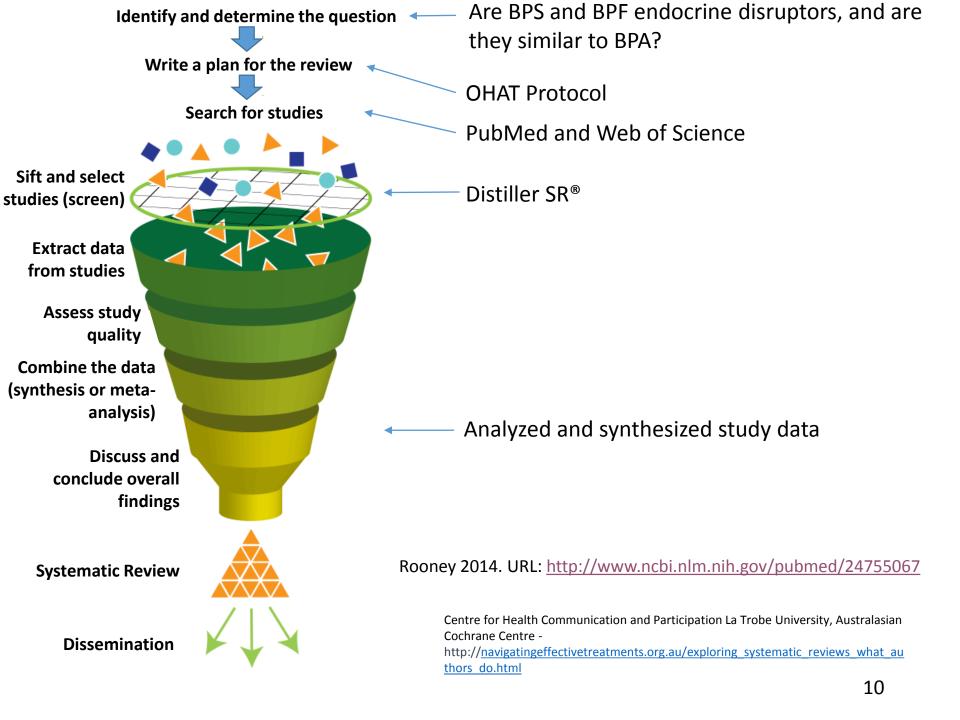
- Hundreds of studies
- In vitro and in vivo
 - Binds to estrogen, androgen, thyroid receptors
 - Disrupts reproduction, central nervous system,
 endocrine pancreas, immune system


BPA and Human Health

- Over 75 epidemiological studies Rochester 2013. URL: http://www.ncbi.nlm.nih.gov/pubmed/23994667
- Disrupted reproduction, development, metabolic system, thyroid system, immune system, etc.
- Adulthood
- Development

BPA Substitutes

- BPS
 - Industrial uses
 - Thermal reciept paper ("BPA-free")
- BPF
 - Industrial uses
 - Consumer uses

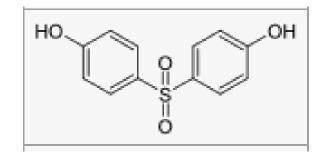


Bisphenol S

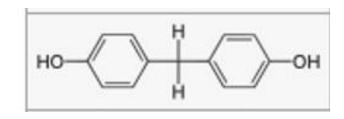
- Found in personal care products, paper products, food, dust, water, sewage effluent
- Both found in human urine at concentrations comparable to BPA

 Liao 2012. URL: http://www.ncbi.nlm.nih.gov/pubr

Liao 2012. URL: http://www.ncbi.nlm.nih.gov/pubmed/22620267
Zhou 2014. URL: http://www.ncbi.nlm.nih.gov/pubmed/24316527


Results: BPS activity

• In vitro:


- Estrogenic
- Androgenic
- Anti-androgenic
- Enzyme changes (caspase-8), liver cells, serum albumin binding, DNA damage

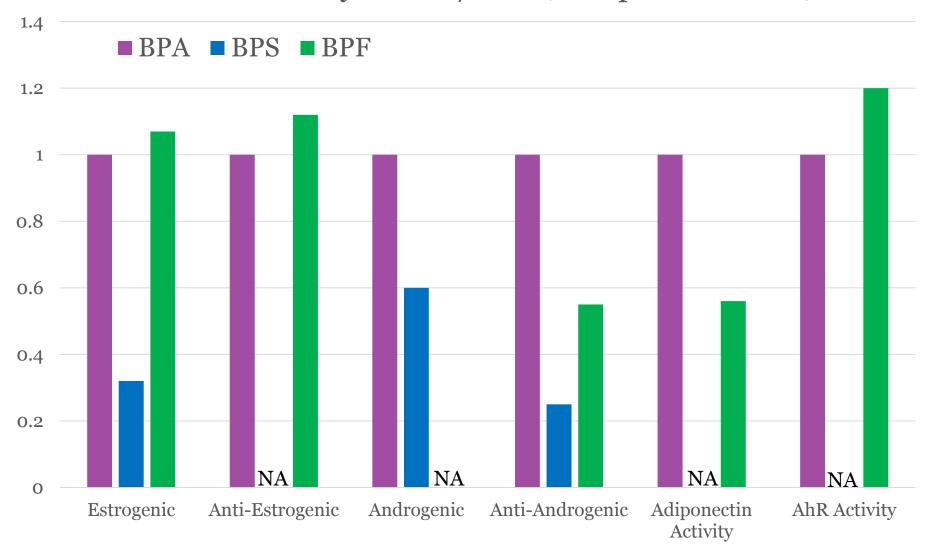
• In vivo:

- Daphnia—acute toxicity
- Zebra fish—reduced gonad weight, changes in serum hormones, disrupted reproduction
- Rats—increased uterine growth

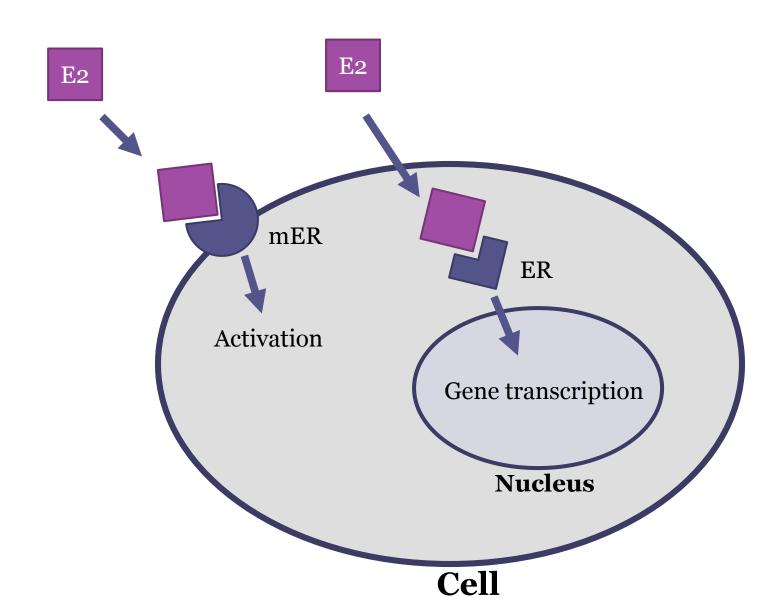
Results: BPF activity

• In vitro:

- Estrogenic
- Anti-estrogenic
- Anti-androgenic
- Cytotoxicity, cellular dysfunction, DNA damage


• In vivo:

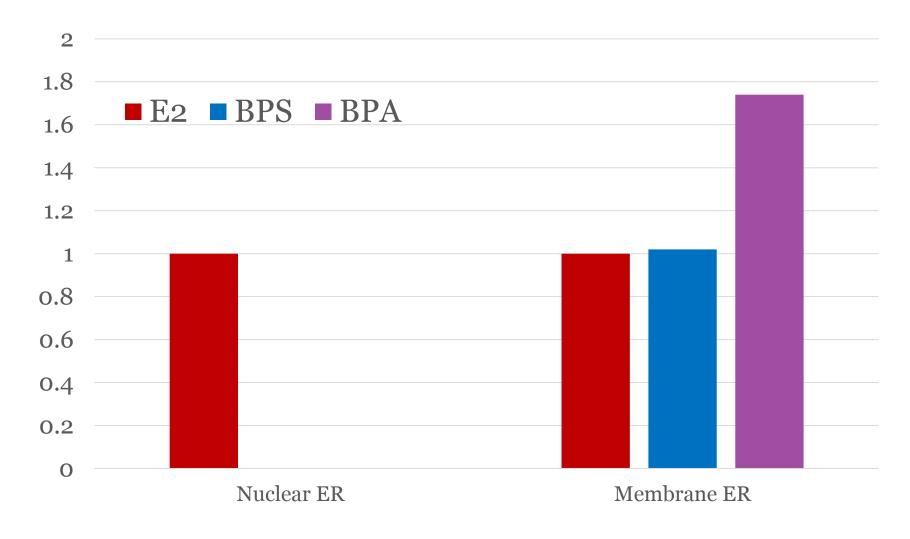
- Daphnia—acute toxicity
- Rats—increased uterine growth, increased male sex organ weight, thyroid disruption


How do BPS/BPF compare to BPA?

- Analyzed studies that tested BPF and/or BPS and BPA in the same assay
- In vitro
- Relative Potencies were calculated by dividing the BPS or BPF potency by the BPA potency in the same study

Relative Potency of BPS/BPF (Compared to BPA)

Different Pathways of Estrogen Action



Estrogenic Activity

- BPA, BPS, and BPF are considered "weak" estrogens in *nuclear* receptor models
 - □ 10⁻⁶ to 10⁻⁴ times less potent than E2
- However in *membrane* receptor models, BPA and BPS are of similar and greater potency to E2

Vinas 2013a. URL: http://www.ncbi.nlm.nih.gov/pubmed/23458715 Vinas 2013b. URL: http://www.ncbi.nlm.nih.gov/pubmed/23530988

Relative Potency of BPA/BPS (Compared to Estradiol (E2))

Conclusions

- BPS and BPF are EDCs
- Similarly potent to BPA via many hormonal activities and actions
- BPS and BPF are not good substitutes for BPA

Recommendations

- Chemicals should be tested before being released
 - "Regrettable Substitutes"
- Classes of chemicals should be regulated
- Research should be directed towards developing biologically inert substitutes for harmful chemicals

Acknowledgements

- Co-Author: Ashley L. Bolden
- TEDX Team: Carol Kwiatkowski, Lynn Carroll, Chris Ribbens, Kim Schultz
- This manuscript was dedicated to Dr. Theo Colborn (1927-2014), founder of TEDX

