CHE Fertility call: Effects of BPA on *in vitro* Fertilization

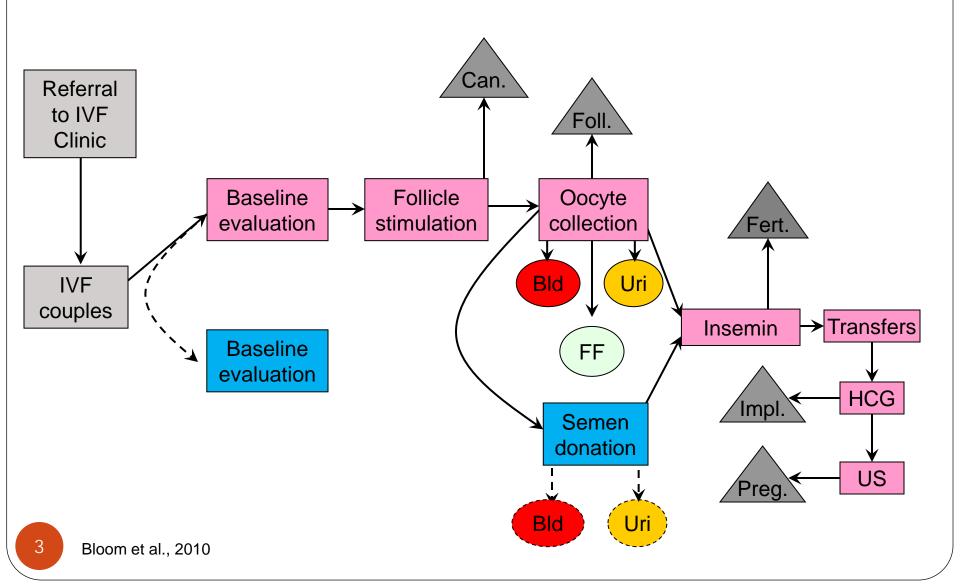
Michael S. Bloom, Ph.D.

Assistant Professor

Departments of Environmental Health Sciences & Epidemiology & Biostatistics

School of Public Health

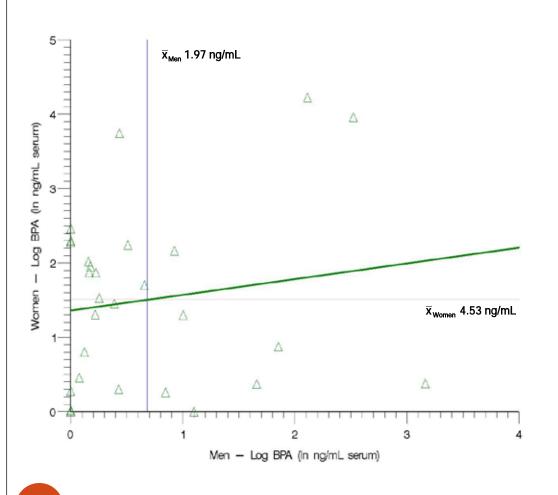
University at Albany, State University of New York


Rensselaer, NY USA

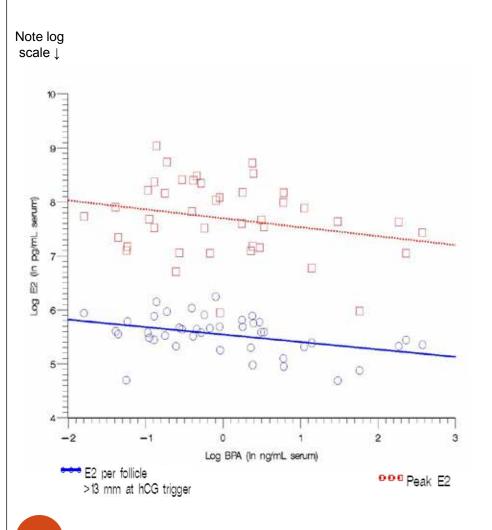
mbloom@albany.edu

Study of metals & assisted reproductive technologies (SMART)

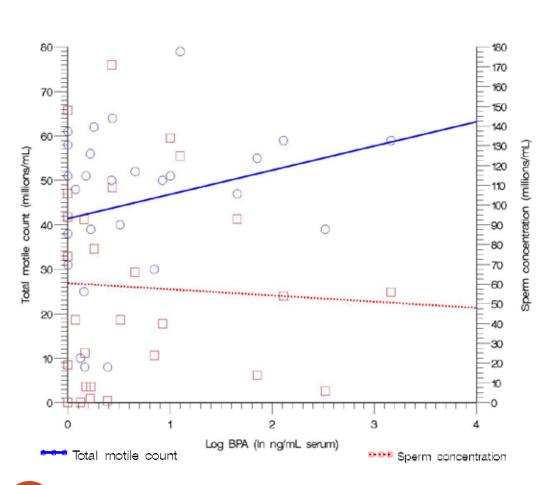
- In an effort to respond to the knowledge gap concerning environmental contaminants and periconceptual events, we initiated a prospective cohort of couples undergoing treatment at the Center for Reproductive Health at the University of California at San Francisco:
 - The aim of this pilot study is to generate specific testable hypotheses concerning associations between background exposures to environmental toxicants suspected to interfere with human reproduction & proximal IVF endpoints


Study protocol

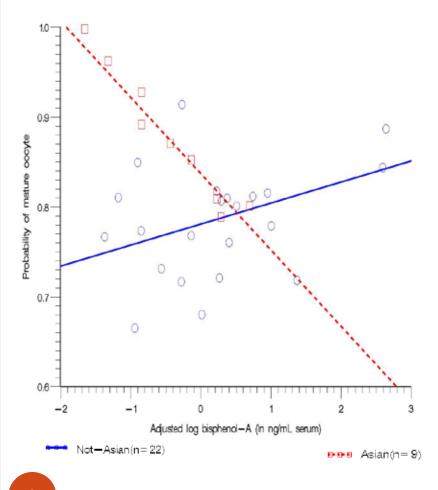
Approach


- Collection of biologic specimens for assessment of environmental exposures at the time of oocyte retrieval from female patients & their male partners:
 - Laboratory analysis for serum unconjugated BPA concentrations using HPLC with Coularray Detection
- Biomarkers of internal dose correlated with endpoints at the:
 - Follicle level
 - Oocyte level
 - Embryo level
- Analysis conducted using the person unit of measurement & using the oocyte/embryo unit of measurement

No association between BPA in women & men comprising 28 couples


- Linear correlation for BPA in women and men:
 - 0.15 (95% CI -0.24, 0.49)
 - No substantial change when adjusted for age, race/ethnicity, or cigarette smoking
- Fasting vs. non-fasting specimens?

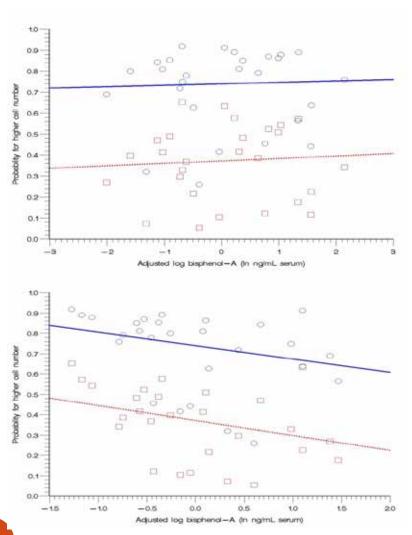
Increased BPA is associated with decreased peak estradiol in 42 women


- A doubling serum unconjugated BPA concentration:
 - Reduction in peak E₂
 - -11% (95% CI -89%, 27%)
 - Reduction in peak E₂ per mature-sized follicle
 - -9% (95% CI -15%, -2%)
- Adjusted for AFC, cigarette smoking, & race/ethnicity
- BPA intefere with E₂ synthesis?

No association between BPA & sperm parameters for 27 men

- Linear correlation for BPA-total motile count:
 - 0.25 (95% CI -0.16, 0.57)
- Linear correlation for BPA-sperm concentration:
 - 0.04 (95% CI -34, 41)
- No substantial change when adjusted for age, race/ethnicity, or cigarette smoking

Increase in female BPA associated with decreased oocyte maturity in ICSI cases


- A doubling serum unconjugated BPA concentration:
 - A reduction in probability for a mature oocyte among Asian women
 - -9% (95% CI -17%, 0%)
 - No effect on probability for mature oocyte among not-Asian women
 - 3% (95% CI -4%, 10%)
- Adjusted for age & cigarette smoking
- BPA interfere with 1st meiotic division?

Increase in female BPA associated with decreased oocyte fertilization

	Model for oocyte fertilization			
Predictor variable	aRR	Low 95% CL	High 95% CL	P value
BPA-female (ng/mL serum)	0.45	0.31	0.66	<.0001
BPA-male (ng/mL serum)	0.96	0.88	1.04	.308
Age-female (y)	0.98	0.95	1.02	.261
Age-male (y)	0.96	0.94	0.99	.008
Race-female (not Asian/Asian)	1.17	0.70	1.97	.547
Race-male (not Asian/Asian)	1.25	0.75	2.08	.386
Smoking-female (never/ever)	1.15	1.03	1.28	.014
Smoking-male (never/ever)	0.82	0.69	0.98	.028
BPA-female × race-female	-	-	_	_
BPA-female × age-female	1.02	1.01	1.03	<.0001
BPA-female × BPA-male	1.06	1.02	1.10	.001
BPA-male × race-male	0.88	0.79	0.98	.022

- A doubling serum unconjugated BPA concentration:
 - Reduced probability for normal fertilization for women:
 - 55% (95% CI -69%, 34%)
 - Affected by age & race/ethnicity
 - Reduced probability for normal fertilization for <u>Asian</u> men only:
 - 12% (95% CI -21%, -2%)

Increased male BPA associated with decreased embryo cleavage rate

- A doubling serum unconjugated
 BPA concentration:
 - No effect for women:
 - 4% (95% CI -19%, 33%)
 - Reduced odds for men
 - -71% (95% CI -40%, 2%)
- Adjusted for partner BPA, age & race/ethnicity
- BPA in male partner interfere with early embryo clevage?

Summary of BPA findings from the SMART Study

- Male BPA exposure may influence embryo quality in couples undergoing IVF
- A doubling of female BPA exposure is associated with a 50% reduction in normally fertilized oocytes with IVF
- There may be a ethnic-specific association between female BPA exposure and reduction in mature oocytes retrieved during IVF
- Increasing female BPA exposure alters the estradiol response during gonadotropin stimulation during IVF