The Science Behind the Particulate Matter (PM) Standards

George Thurston, Sc.D. New York University School of Medicine NYU-EPA PM Center, Deputy Director Tuxedo, NY 10987

For Presentation at: STAPPA AND ALAPCO 2005 FALL MEMBERSHIP MEETING OCTOBER 22-26, 2005

Discussion Topics

• What's Been Learned Since the Last Standard Setting Process in 1997 regarding:

- PM Health Effects Mechanisms

- Epidemiological Bases of the PM_{2.5} Short and Long-Term Standards

- The Health Benefits of Various Standards
- Implications to PM_{2.5} Standard Setting

State of the Science in 1998

- Dozens of epidemiology studies from around the world reported associations between ambient PM and cardiac mortality and morbidity
- PM levels are very low compared with other particle exposures:

One cigarette = 10×10^{10} x more than typical 24 hour exposure to PM

• No widely accepted patho-physiological pathway or mechanism could explain how a person could die from exposure to PM at such low levels of air pollution.

The Epidemiological Pyramid of Air Pollution Effects

People Most Affected by Ambient Air Pollution

- <u>Older Adults</u>
- <u>Persons with Pre-Existing Respiratory Disease</u> (e.g., Chronic Obstructive Pulmonary Disease, COPD, such as emphysema, those with Cardiac problems)
- <u>Children</u>, especially those with Asthma.
- Healthy adults who work or exercise outdoors.
- <u>Persons with inadequate health care</u>, such as the poor and working poor.

Particle Deposition in the Lung

- Larger particles deposit in the upper airways (nose and throat) and are cleared out
- Smaller particles penetrate deep into the lungs and stay there longer

The very smallest (ultrafine) particles may enter the blood and travel throughout the body.

The First NRC Report

A Key Question in 1998:

What are the underlying mechanisms (pulmonary, vascular, cardiac) that can explain the epidemiological findings of mortality and morbidity associated with exposure to ambient particulate matter?

WHAT WE HAVE LEARNED IN RECENT YEARS

Potential Effects of PM on the Pulmonary System

PM Depresses Clearance and Inactivation of Bacteria

Epidemiology studies report associations between PM and increased incidence of hospitalization for respiratory infections.

Inactivation

Host Resistance Model

	Control	Woodstove
% Mortality (Streptococcus)	0	21

Time after Infection (Hrs)

Gilmour et al., 2002

PM Exposure Exacerbates Asthma

Change in exhaled nitric oxide per 10 μg/m³ increase in PM_{2.5}in children with asthma

Potential Effects of PM on the Cardiovascular System

PM Affects Autonomic Nervous System Control of the Heart

Elderly humans exposed to fine CAPS experience decreases in heart rate variability (HRV).

People with cardiovascular disease who have decreased HRV have a higher risk of getting a heart attack.

Devlin et al, 2003

PM Triggers Cardiac Arrhythmias in Humans

The number of times that implanted defibrillators discharged were related to prior days levels of PM and PM components

PM_{2.5} 1.22 (0.7,2.0) BC 2.16 (1.0,4.9)

Black Carbon (lag 2)

Peters et al, 2000

PM Causes Injury to Cardiac Cells

Rats exposed to ambient PM one day per week for 16 weeks

Kodavanti et al., 2003

PM Increases Vascular Inflammation

Other Epidemiology Also Confirms a Rise in C-Reactive Protein (CRP) during Higher PM (Source: Peters et al, EHJ, 2001)

Figure 2 Multivariate regression results for quintiles of total suspended particulates (TSP) on C-reactive protein concentrations above $5.7 \text{ mg} \cdot 1^{-1}$ (90th percentile).

Acidic Sulfates, Transition Metals, and Oxidative Stress

- <u>Transition metals</u> (e.g., Fe and V) can mediate electron transfer via Fenton Reactions causing oxidative stress.
- Oxidative Stress (OS) can lead to cellular damage:
 - OS is known to be involved in inflammation, tissue aging, cardiac ischemia, arthritis, cancer, and fibrosis (Mossman and Marsh, 1989, Janssen et al, 1993, Costa et al, 1989a, 1989b; Ewing, 1983; Slaga, 1983; Harman, 1981).
- The presence of <u>acids in a particle greatly enhance the</u> <u>transition metals' solubility</u> and, therefore, their bioavailability, increasing OS.
 - E.g., See Veronesi et al., 1999, <u>Toxicol. Appl. Pharmacol.</u>, 155:106-115;
 Carter et al., 1997, <u>Toxicol. Appl. Pharmacol.</u>, 146:180-188; and Chen et al.
 1990, J. <u>Toxicol. Environ. Hlth</u>. 29:169-184.

PM Increases Levels of Clotting and Coagulation Factors

Humans exposed to CAPS have changes in several blood factors which could potentially lead to a more prothrombogenic environment.

The net changes in these factors could potentially lead to an environment conducive to the formation of blood clots.

Devlin et al, 2004

PM Increases Arterial Plaque Thickness

Subchronic exposure of ApoE-/-LDLr-/- double knockout mice to CAPS for 6h/day, 5d/week, for 6 months (average of 110 µg/m³) increases plaque cellularity.

Effects of CAPs on aorta plaque size demonstrated in ApoE KnockOut Mice

Lesion area of logitudinal sections

P = 0.03

Toxicology Progress Summary

Mechanistic Studies Have:

- Defined several biologically plausible pathophysiological pathways by which PM can increase mortality and morbidity.
- Provided coherence to the epidemiology studies and extended their observations, thus strengthening the science in support of the PM standard.

Epidemiologic Evidence Also Strengthened Since 1998

- Dozens of new short-term studies confirming the fine particle-mortality and morbidity associations.
- An extended analysis of the original American Cancer Society (ACS) prospective cohort study confirmed previous results, and found associations between long-term exposure and lung cancer.

Mortality Risk of Long-Term Fine PM Exposure Decrease with Exposure Below 10 ug/m³

(Pope, Burnett, Thun, Calle, Krewski, Ito, and Thurston) (JAMA, 2002)

JAMA Study Conclusions

- Long-term exposure to fossil fuel combustion air pollution, and especially to fine particulate matter, is associated with increased annual risk of mortality.
- For lung cancer, living in a more polluted city is associated with approximately a 20% increase in residents' risks of dying from lung cancer.
- This is roughly comparable to the cancer risk of passive smoking exposure from living with a smoker.
- The cancer risk from air pollution appears greatest for non-smokers and those with lower socio-economic status.

Cardiovascular Mortality Most Affected by Long Term Particulate Matter Air Pollution Exposures

Relative Risks and 95%ile CI's

for a 10 ug/m³ increase in Annual $PM_{2.5}$ mass concentration (SOURCE: Pope, Burnett, Thurston, Thun, Calle, Krewski, and Godleski, <u>CIRCULATION</u>, 2004)

New PM_{2.5} Short-term Studies Indicate PM-Mortality Association Exists Below 15 ug/m³ Mean Concentration

PM_{2.5} Mortality % Effect (+/- 95% CI) Plotted vs. Mean Study PM_{2.5} Conc.

New PM_{2.5} Short-term Studies Indicate that Co-Pollutants Do Not Modify the PM Effect (Source: EPA PM Staff Paper, 2005)

New Size-Specific PM Studies Suggest That Urban Coarse Particles (PM₁₀-PM_{2.5}) May Also Associate With Acute Health Effects

(Source: CARB PM Report, 2002)

Figure 7.4 Daily Mortality Increases Associated with Fine and Coarse Particles

EPA Staff Paper Benefit Analysis of Lowering the Short-Term PM Standard: <u>Annual Standard "Controls" Benefits > 30 ug/m³</u>

Figure 5-2(a) Estimated percent reduction in PM_{2.5}-related short-term mortality risk for alternative standards (98^{th} percentile form) relative to risk associated with meeting current standards (based on assumed cutpoint equal to policy-relevant background). Risk associated with meeting current PM_{2.5} standards, based on ACS extended study, is shown in figures in terms of estimated annual incidence rate and annual incidence (and 95% confidence ranges). Estimated policy-relevant background is 3.5 µg/m² in eastern cities and 2.5 µg/m² in western cities.

EPA Staff Paper Benefit Analysis of Lowering the Long-Term PM Standard: More Deaths Avoided by Reducing Annual Avg.

Figure 5A-1(a) Estimated percent reduction in PM_{2.5}-related long-term mortality risk for alternative standards (99th percentile form) relative to risk associated with meeting current standards (based on assumed cutpoint of 7.5 $\mu g/m^3$). Risk associated with meeting current PM_{2.5} standards, based on ACS extended study, is shown in figures in terms of estimated annual incidence rate and annual incidence (and 95% confidence ranges).

Most Mortality Benefits are Associated With Lowering the Annual Average PM_{2.5} (Source: U.S. EPA PM Staff Paper, 2005)

But Mathematically Imposing a Threshold (Cutoff) of Effects on the PM Mortality Curve Reduces the Estimated Benefits

Imposing a Threshold of Effects (Cutoff) on the Analysis Inappropriately Slashes Estimates of Clean Air Benefits: <u>EPA Base Case Is Best Estimate</u>

Estimated Mortality Reduction Associated with

a 12ug/m³/25 ug/m³ Standard (Source: U.S. EPA Staff Paper, 2005)

Implications

- New toxicological research has shown numerous effects and pathways of PM effects indicating that the <u>epidemiological</u> associations with morbidity and mortality are biologically plausible at ambient levels of PM_{2.5}.
- New epidemiological research has shown significant mortality and morbidity effects below the present PM_{2.5} standards, supporting the setting of new U.S. standards at the lower end of the EPA Staff Paper's range of PM_{2.5} standard options.

Acknowledgements

The Toxicology Progress portion of this presentation was based largely on progress reports presented at the most recent PM Center Directors' meeting in Washington, DC in October, 2004, including:

- Dr. Morton Lippmann, NYU
- Dr. Lung Chi Chen, NYU
- Dr. Robert Devlin, U.S. EPA